
LECTURE 21 LINEARIZATION

When we �nd the derivative of a function, as a function, we are basically saying that at each point x, the
function looks like its tangent line. This is a fair approximation as we move along. But moving along incurs
too much computational resource, namely, you are required to evaluate the derivative at every point. What
if our domain of interest is very small, such that points far away from this domain is of no interest? Can we
simply claim that, the function on this domain, can be simply approximated by a line, namely, the tangent
line at the left most point of the domain? We miss by some error, certainly, but there is a plus side.

Suppose our function is

f (x) = sin (x) ecos
2(x)

a very ugly looking function. The computational resource we need to compute the value of f (x) at a speci�c
x is very high � namely, sin (x) is costly, square root is costly, and exponential also is costly.

However, suppose we only want the function values on the interval
[
0, π2

]
. Can we exchange evaluation

error for computational simplicity, on this interval? Let's compute the tangent line, represented by L (x),
at x = 0, and claim that we can approximate all function values of f (x) on this interval, by L (x), with
controllable error.

Note that
L (x) = mx+ b

where m = f ′ (0). How do �nd b? This is the equation of the tangent line at (0, f (0)). Therefore, we do
point-slope form,

L (x)− f (0) = m (x− 0) =⇒ L (x) = f ′ (0)x+ f (0) .

In general, for the tangent line at x = a, and thus at the coordinate (a, f (a)), we �nd

L (x)− f (a) = f ′ (a) (x− a) =⇒ L (a) = f (a) + f ′ (a) (x− a) .

We saw that L (x) is the linearization of f (x) at x = a. One must specify the point at which the
linearization is about.

Example. Consider f (x) = x2. Find the linearization L (x) about x = 1. Are we underestimating/overestimating
f (x) using L (x) on the interval [1, 2]?

Let's �nd the tangent line at x = 1.

f ′ (x) = 2x =⇒ f ′ (1) = 2.

Also, the function value is f (1) = 1. Thus,

L (x) = f (1) + f ′ (1) (x− 1) = 1 + 2 (x− 1) = 2x− 1.

Let's plot the original function f (x) = x2 and the linearization at x = 1, L (x) = 2x− 1. We see that L (x)
lies underneath f (x) on [1, 2], thus implying that it is always underestimating the original function.

Example. Let's now consider the function at the start of the class. Let's �nd its linearization at x = 0,
where

f (x) =
√
sin (x)ecos

2(x)

and decide how good the approximation is on the interval
[
0, π2

]
.
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